skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Brutman, Jacob P"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Carbamate formation and exchange catalysts enable efficient polyurethane (PU) manufacturing, as well as emerging recycling and reprocessing methods for PU thermosets. Zirconium β-diketonate complexes, such as Zr acetylacetonate [Zr(acac)4], are effective alternatives to toxic organotin catalysts that have been used for PU reprocessing. Here, we report that Zr(acac)4 undergoes a thermally activated process in the PU network during reprocessing that transforms it into a more active carbamate exchange catalyst. This process is associated with the irreversible loss of acetylacetonate ligands and is not observed for the more sterically hindered Zr 2,2,6,6-tetramethyl-3,5-heptanedione [Zr(tmhd)4] complex. Crossover experiments between PU thermoplastics indicated enhanced carbamate exchange after the thermal activation of Zr(acac)4 in the presence of one of the PUs, whereas a sample of Zr(acac)4 activated in the absence of the PU had no catalytic activity. Thermal gravimetric analysis suggested that this process is associated with the loss of one protonated acac ligand. Stress relaxation analysis of PU thermosets indicated a distinct change in the characteristic relaxation time associated with the thermal activation of Zr(acac)4 at temperatures above 140 °C; no such change was observed for samples reprocessed using Zr(tmhd)4. Density functional theory and molecular experiments suggest that irreversible ligand exchange of acac with alkoxide or carbamate reduces the activation energy for urethane formation and reversion. Furthermore, the Zr(acac)4 catalyst activated in the presence of a PU’s polyol precursor provided more porous and less dense PU foams compared to those made using the unactivated Zr(acac)4 catalyst. These findings are important for developing improved PU synthesis and recycling processes. Thermally activating a catalyst during reprocessing may provide more nuanced control of the in-use and reprocessing characteristics of PU thermosets. 
    more » « less
  2. ABSTRACT Crosslinked polyhydroxyurethane (PHU) networks synthesized from difunctional six‐membered cyclic carbonates and triamines are reprocessable at elevated temperatures through transcarbamoylation reactions. Here we study the structural effects on reprocessability and stress relaxation in crosslinked PHUs. Crosslinked PHUs derived frombis(five‐membered cyclic carbonates) are shown to decompose at temperatures needed for reprocessing, likely via initial reversion of the PHU linkage and subsequent side reactions of the liberated amine and cyclic carbonate. Therefore, several six‐membered cyclic carbonate‐based PHUs with varying polymer backbones and crosslink densities were synthesized. These networks show large differences in the Arrhenius activation energy of stress relaxation (from 99 to 136 kJ/mol) that depend on the network structure, suggesting that transcarbamoylation reactions may be highly affected by both chemical and mechanical effects. Furthermore, all crosslinked PHUs derived from six‐membered cyclic carbonates show mechanical properties typical of thermoset polymers, but recovered as much as 80% of their as‐synthesized tensile properties after elevated temperature compression molding. These studies provide significant insight into factors affecting the reprocessability of PHUs and inform design criteria for the future synthesis of sustainable and repairable crosslinked PHUs. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci.2017,134, 44984. 
    more » « less